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ABSTRACT

The subcellular location of proteins is most often 

determined by visual interpretation of fluorescence 

microscope images. In recent years, automated systems have 

been developed so that the protein pattern in a single cell 

can be objectively and reproducibly assigned to a location 

category.  While these systems perform very well at 

recognizing all major subcellular structures, some similar 

patterns are not perfectly distinguished.  Our goal here was 

to improve performance by considering more than one cell 

in a field.  We describe how to construct a graphical model 

representation for a field of cells while taking into account 

the characteristics of the cell type being studied. We show 

that this approach provides improved performance on 

synthetic multi-cell images in which the true class of each 

cell is known, and that a new approximate inference method 

can provide this improved performance with significantly 

faster computation times than previous approaches. 

1. INTRODUCTION 

As the prospect of building meaningful models of biological 

systems grows through the acquisition of comprehensive 

information on protein sequence, structure and activity, it 

becomes increasingly important to have approaches that can 

provide information on the subcellular location of each 

protein as well.  Such information is usually obtained using 

fluorescence microscopy to examine the distribution of 

fluorescently-tagged proteins.  In recent years we have 

developed automated systems that can interpret such images 

with accuracy and reproducibility greater than visual 

examination [1].  

These systems consist of machine classifiers and sets of 

informative numerical features (which we term SLFs, for 

Subcellular Location Features [1]) to describe protein 

distributions in the cell.  Using large collections of HeLa 

cell images containing ten distinct subcellular patterns, the 

systems have achieved classification accuracies as high as 

92% and 98% for 2D and 3D single cell images, 

respectively [1, 2]. The patterns of dissimilar classes can be 

distinguished quite well; however, there is still room to 

improve the classification accuracy for similar classes (such 

as endosomal and lysosomal proteins and different Golgi 

proteins). 

We describe here an approach to improve this 

performance by constructing a graphical model to capture 

pattern information for more than one cell in a field. 

Graphical models have been extensively applied to 

problems in computer vision  but have not previously been 

applied to the recognition of subcellular patterns in multi-

cell images.  Large numbers of such images [3] are 

increasingly being acquired both in projects aimed at 

determining the subcellular location of all proteins [4-7] and 

in drug screening by high-throughput microscopy [8]. 

A graphical model consists of an algorithm for 

constructing the graph itself and an algorithm for making 

inferences given the graph.  In this paper, we first describe 

how to construct graphs for the problem of subcellular 

location classification. We next present a new inference 

algorithm, which we term prior updating, that permits 

inferences to be made for the resulting graphs. We then 

describe experimental results comparing performance and 

execution times for different inference methods. 

2. CONSTRUCTING A GRAPHICAL MODEL 

Given a field of cells in which each cell has been classified 

based solely on its SLFs, we consider how we can “revise” 

these assignments based on the number of classes most 

likely to be present in that field.  To this end, we construct a 

graphical model with a node for each cell and edges 

connecting similar cells. There are two sorts of information 

we might consider when deciding which pairs of cells to 

connect with edges: similarity between cells in feature 

space, and closeness between cells in physical space.  The 

relative importance of these two sources of information 

depends on how long the cells have been plated (tplate)

relative to their generation time (tg), as well as how quickly 

the cells move (vtrans).

2.1. Physical and Feature Space Models 

If the plating time is significantly greater than the 

generation time (tplate >> tg), each original cell is expected to 

divide a number of times before imaging.  If in addition 
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vtrans is low, we may consider it likely that the classes of 

cells adjacent to one another are the same.  In this case we 

can construct a graph by connecting two cells if the 

Euclidean distance between the centers of the cells in the 

field is low; we call this graph a physical model.

If tplate is short relative to tg, most cells will not have 

time to divide prior to being imaged.  Even if tplate is long, if 

vtrans is also large, related cells are likely to move away from 

one another after they divide.  In either case, physical 

proximity of cells does not provide much information about 

their likely similarity.  The only clues that we have about 

the number of classes present and the number of cells in 

each class are the similarities between cells in the SLF 

feature space.  In this case, we construct a graph by 

connecting pairs of cells whose z-scored Euclidean distance 

in feature space is small; we call this graph a feature space 

model.

In either type of model, we need to pick a cutoff 

distance dcutoff to determine which pairs of cells are close 

enough to be connected by edges.  The units of dcutoff are 

different for the two types of models, but large values result 

in graphs with many edges, while small values result in 

graphs with few edges. We define a parameter C, the graph 

complexity, and select dcutoff so that C% of the edges are 

present in the graph.

3. INFERENCE METHODS 

Given a graph of either of these types, we can turn it into a 

graphical model by providing an algorithm which trades off 

evidence from a single-cell classifier against the desire to 

make a cell’s classification similar to the classifications of 

its neighbors.  We can derive several such algorithms by 

interpreting the graph as a Bayes network, in which groups 

of neighboring nodes are encouraged to have similar classes 

through various types of potential functions. 

3.1. Potts Potential and Voting Potential 

Suppose that we have learned a classifier which maps the 

features f of an example to a probability distribution P(x)

over possible labels x. Now suppose that we have a 

collection f1, f2, f3 of  feature vectors for test examples with 

labels x1, x2, x3 arranged in a graph, as shown in Figure 1.  

Informally, an edge connecting xi and xj means that labels xi

and xj are likely to be the same. 

If we interpret the graph as a Bayes net, each label xi

becomes a variable or node in the network.  Whenever two 

nodes are connected by an edge we want to encourage their 

labels to be the same; one way to do so is by using the 

following pairwise potential function: 
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where Z is the normalizing constant and P(xi) represents the 

evidence of node i for every possible label. The above 

potential is called the Potts potential, and the Bayes net with 

this potential is called the Potts model [9]. 

Unfortunately the Potts model does not perfectly 

capture our initial intuition about inference from labels of 

neighboring classes. To better capture this intuition, we 

define the voting potential function: 

m

xvIn

vvx
xNk

k

)(

21

),(/

,...),,( (3)

where x is an arbitrary node in the graph, v1, v2, …vm are x’s

neighbors, n is the number of classes and m is the number of 

neighbors of x (not counting x itself).  is a smoothing 

parameter: the smaller  is, the more strongly x’s neighbors 

will influence x’s classification. I is an indicator function 

which is 1 when  xvk  and 0 otherwise. N(x) is the set of 

x’s neighbors. This voting potential function combines the 

evidence from all of node x’s neighbors into a summary 

vote which then influences x’s classification.

3.2. Inference methods on Bayes Nets 

Given a Bayes net, we want to combine the evidence from 

the single-cell classifiers with the potential functions to infer 

the posterior probability of each class for each node.  For 

some networks, an exact solution can be found using the 

belief propagation (BP) algorithm [10].  However, BP can 

only calculate the posterior probability correctly on graphs 

where there is at most one path between any two nodes.  If 

there are loops in the graph, exact inference can be done in 

two ways: either by making a table of the joint probability 

distribution of all possible label vectors x and summing the 

appropriate entries, or by using the junction tree algorithm 

[11] to convert the loopy graph into a tree and then applying 

BP to the tree.  We will write EIPP for exact inference with 

the Potts potential, and EIVP for exact inference on the 
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f2

x1
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Figure 1. A collection of 3 test examples is arranged in a 

graph. fi and xi are the feature vector and the class label 

of example i, respectively. An edge connecting two 

nodes means that their values are directly related to one 

another. 
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voting potential. In either case the computation time can be 

exponential in the length of the label vector x.

Exact inference is impractical for large graphs, and 

hence approximate methods are needed.  Loopy belief 

propagation (LBP) iteratively applies belief propagation 

updates on a graph with loops and often gives good 

approximate inference when it converges [12].  We will 

write LBPP for LBP with the Potts potential, and LBVP for 

LBP with the voting potential.  LBVP can still be too slow 

on large graphs, since its running time is exponential in the 

number of arguments to the largest potential function. 

We have developed a fast approximation to LBVP 

which we term prior updating (PU), which accelerates 

computation of some LBP messages and ignores others. A 

complete description will be presented elsewhere (Chen, 

Gordon and Murphy, submitted).  The data and code for the 

experiments below are available at 

http://murphylab.web.cmu.edu/software. 

4. EXPERIMENTAL METHODS

4.1. 2D HeLa Image Set 

We applied our methods on a set of fluorescence 

microscope images of HeLa cells created by introducing 

antibodies and molecular probes against proteins in major 

subcellular organelles [6]. The data set contains 862 single-

cell images from ten classes, with each class having 

between 73 and 98 images.  The true class of each image is 

known with certainty since the probe added to each slide is 

known.

4.2. Single-Cell Classifier 

Feature set SLF16 [13], which has yielded the best single-

cell classification results to date, was used to describe each 

single cell image.  SLF16 contains 47 features of various 

types, including Zernike moment features, Haralick texture 

features, morphological features, and wavelet features.  

Descriptions of these features are available at 

http://murphylab.web.cmu.edu/services/SLF. 

Given SLF16 features for each cell in our training set, 

we learned one Support Vector Machine (SVM) [14] for 

each class.  The ith SVM is trained to distinguish the ith class

from the union of all other classes. Each SVM uses an 

exponential radial basis function kernel with =7 and C=20, 

which were the optimal values for feature set SLF16 in our 

prior work [13].  To classify a test example, we fed it into 

each SVM, and the one with the highest output was 

assigned as the predicted class. To obtain posterior 

probabilities that are directly comparable between classes, 

after training each SVM we fit a sigmoid to its output scores 

using regularized maximum likelihood [15]. These posterior 

probabilities form the evidence at each node in our Bayes 

net. 

5. RESULTS

We first evaluated whether the voting potential is better 

than the Potts potential at representing the information 

“neighboring nodes should have similar classes,” using 

graphs that are small enough so that exact inference is 

achievable. We compared the performance of EIVP, PU, 

EIPP and LBPP to our SVM baseline classifier (using 16-

fold cross-validation). The arrangement of the cells was 

synthetic, but the cell images were taken from the 2D HeLa 

dataset.  

 EIPP LBPP EIVP PU 

Accuracy

Improvement 
1.58 1.58 2.84 3.04 

Table 1. Results for graphical models of cell images in 

small graphs, in percentage points. Base accuracy of the 

single cell image classifier is  88.29%.  

We built graphs containing 8 cells (4 each of two of the 

five possible classes), and fixed dcutoff so that 50% of the 

possible edges were present.  We used =1.3 for the Potts 

potential, and =2.5 for the Voting potential; these values 

were approximately optimal for a range of different Bayes 

nets. Table 1 shows the accuracy improvement in 

percentage points over the single cell classifier. The results 

suggest that the voting potential performs much better than 

the base classifier (one-tailed t-test: p=0.0066) and 

somewhat better than the Potts model (one-tailed t-test: 

p=0.0314).  There is no significant difference between the 

exact and approximate inference methods for either model.  
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Figure 2. Results for graphical models of cell images in 

large graphs. The methods are PU ( ) and LBPP ( ). 

Encouraged by the above results, we next considered if 

we can obtain similar improvement in large graphs using the 

full HeLa data set. The Bayes nets in this case are too large 

for the exact inference methods, so we only compared the 

performance of PU and LBPP to each other and to our SVM 

baseline classifier (using 12-fold cross-validation). We built 

a graph containing 12 cells (6 each of two of the 10 possible 

classes). In each trial, we varied dcutoff to achieve levels of 
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connectivity ranging from 0% to 100% of the possible 

edges. Figure 2 demonstrates that PU can achieve good 

improvement in classification accuracy. LBPP can only 

improve the accuracy to a lesser degree. All differences in 

the graph are significant with p<0.01 except LBPP versus 

SVM at C=100. 

Figure 3 compares the computational efficiency of the 

different inference methods and demonstrates that PU is 

much faster than competing algorithms. Each point in the 

figure shows the average inference time per trial on 

different sizes of graphs with various algorithms (note the 

logarithmic time scale). The exact inference methods take 

time exponential in the size of the graph and are impractical 

to run for graphs of more than 12 nodes, while the 

processing times of PU and LBPP are approximately linear 

in the size of the graph.
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Figure 3. Inference Time vs. Graph Size with different 

inference methods. The methods are PU ( ), LBPP ( ), 

EIVP ( ), and EIPP ( ). This experiment was conducted 

by 8-fold cross-validation for four similar classes (the 

endosomal and lysosomal proteins and two Golgi proteins). 

6. CONCLUSION AND FUTURE WORK 

We have presented a new solution to the problem of 

classifying multiple dependent examples in a protein 

subcellular location pattern recognition task.  Our solution is 

based on a Bayes net with the voting potential function. In 

addition to the new Bayes net, we have presented a new 

inference algorithm called Prior Updating, an approximation 

to loopy belief propagation (which is itself an 

approximation to exact inference). Our experiments show 

that voting potential does better than Potts potential, and PU 

runs quickly and provides an accuracy improvement over 

the base classifier on large networks derived from real data. 

Our work has particular implications for classification 

of patterns in images obtained by high-throughput or 

automated microscopy [7, 8].  Since high-throughput 

systems typically use low magnification, the number of cells 

per field is often high and the accuracy of single-cell 

classifiers is usually not perfect. By applying this method on 

multi-cell images made of real single cells and synthesized 

locations, we are able to verify that our scheme can be used 

for such systems to achieve significantly better 

performance. 
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